MLL Break Apart DNA-FISH Probe Two Color, Break Apart Probe C€ Ref: 11-002

MLL Break Apart

Intended Use

The *MLL* Break Apart probe is designed to detect the translocation involving the *MLL* gene on chromosome 11q23 using fluorescence *in situ* hybridization (FISH). At least 104 translocation partner genes have been identified.^[1] Translocation of *MLL* is found in ~3-10% of acute lymphoblastic leukemia (ALL) cases, and in ~8-10% of acute myeloid leukemia (AML) cases, and is prognostically relevant in these leukemias.^[2,3] However, the prognostic implication is dependent on the age and phenotype of the leukemia. *MLL* rearrangement has been observed in ~80% of infant ALL cases and is associated with a high risk in such cases and requires aggressive treatment. In AML, the prognosis is intermediate regardless of age. *MLL* translocations are also found in ~25% of patients with therapy-related leukemias, particularly following treatment with DNA topoisomerase II inhibitors and the prognosis in such patients is poor.^[2,3] In addition to translocations, deletions of 3' *MLL* and amplification of *MLL* also occurs in a subset of ALL and AML cases.^[4,5]

Schematic of the MLL Break Apart DNA-FISH Probe:

Horizontal red and green bars indicate the region covered by the probe (approximate to scale, NCBI Build 36.1/Hg18/2006). Breakpoints in MLL span an 8 kb region between exons 5 to 11 (arrows). The directly labeled 5' MLL (green) and 3' MLL (red) probes flank the MLL gene and can detect translocations, amplifications, and 3' MLL deletions.

Signal Interpretation

In normal diploid metaphase chromosomes and interphase nuclei, the probe generates two fusion signals (red/green or yellow) corresponding to the two normal homologous chromosomes 11 (Figure 1). In cells with chromosomal rearrangement involving the *MLL* gene, the most commonly observed pattern is one fusion, representing the normal chromosome 11, and a single red and green signal, representing the derivative chromosomes (Figure 2). Amplifications, 3' *MLL* deletions, additional copies of chromosome 11, unbalanced translocations, or multiple copies of derivatives may result in variant signal patterns and these should be confirmed by metaphase chromosome analysis whenever possible. [4,5]

Figure 1: Normal diploid metaphase and interphase nucleus (from normal peripheral blood specimen) with 2 fusion signals (red/green or yellow).

Figure 2: Interphase nuclei with 1 fusion (red/green or yellow), 1 red (3' *MLL*), and 1 green (5' *MLL*) signals.

References

- 1. Meyer, C., et al., Leukemia, 2009. 23: 1490-9.
- 2. Coenen, E.A., et al., Blood, 2011. 117(26): 7102-11.
- 3. Chowdhury, T., et al. Blood Cells Mol Dis, 2008. 40:192-199.
- 4. Barber, K. E., et al. Genes Chromosomes Cancer, 2001. 41:226-271.
- 5. Andersen, M. K., et al. Genes Chromosomes Cancer, 2001. 31:33-41.

Fluorescence Microscopy Filter Requirements

Fluorophore	Excitation max	Emission max
Green	496 nm	520 nm
Red	580 nm	603 nm
DAPI	360 nm	460 nm

Instructions for use are available at www.cancergeneticsitalia.com

Cancer Genetics Italia S.r.l. Viale Luigi Majno, 17 20122 Milano – Italia

www.cancergeneticsitalia.com support@cancergeneticsitalia.com